基于在线观察的激光焊接凝固热裂纹敏感性研究

温 鹏¹ 荻崎贤二² 山本元道² (¹清华大学机械工程系,北京 100084 (²广岛大学机械系统工程系,日本 739-8527)

摘要 激光焊接过程中较快的冷却速度可能会加剧凝固热裂纹的发生。目前对于激光焊接过程中凝固热裂纹敏 感性的系统研究还较少,如何准确测量焊接凝固热裂纹发生的临界应变和温度是获得热裂纹敏感性数据的关键。 利用基于高速高倍在线摄像的 U 型热裂纹实验, 捕捉到激光焊接过程中凝固热裂纹发生的瞬间, 并通过跟踪测量 热裂纹尖端附近两点的位移变化获得凝固热裂纹发生的临界应变;同时,在焊接过程中采用在线观察热电偶投入 法对焊接熔池后端的温度变化进行了测量。通过改变 U 型热裂纹实验的拉伸载荷,获得不同温度下热裂纹发生时 的临界应变,从而构建表征凝固热裂纹敏感性的韧性曲线。

关键词 激光技术;焊接;凝固热裂纹;在线观察;U型热裂纹实验 中图分类号 TG456.7 doi: 10.3788/CIL201138.0603005 文献标识码 A

Evaluation of Solidification Cracking Susceptibility during Laser Welding by In-situ Observation Method

Wen Peng¹ Shinozaki Kenji² Yamamoto Motomichi²

¹ Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China (² Department of Mechanical System Engineering, Hiroshima University, 739-8527, Japan

Abstract The rapid cooling during laser welding can prompt the occurrence of solidification cracking, however, few study is found on systematic research of solidification cracking during laser welding. It is the key to accurately measure the critical strain and temperature of the crack in order to know solidification cracking susceptibility. By using U-type hot cracking test with in-situ observation method, the occurrence of solidification cracking is captured clearly by high-speed-high-magnification camera. With the *in-situ* observation method, the local critical strain of crack is measured by tracking the displacement of two reference points near the crack; the local temperature of crack is measured by inserting the thermocouple to the trailing edge of the weld pool. Local critical strains at different temperatures are obtained under different tensile loads in U-type hot cracking test. The high temperature ductility curve is achieved accurately.

Key words laser technique; welding; solidification cracking; *in-situ* observation; U-type hot cracking test OCIS codes 140.3390; 100.2000; 350.3390

1 弓[

凝固热裂纹是许多材料焊接过程中的常见缺 陷,由于晶粒边界处残留液体金属的存在,焊缝金属 在凝固温度区间内呈现极低塑性,如果此时焊缝金 属所承受的拉伸应变大于其所具有的塑性,凝固热 裂纹就会产生。焊缝金属在凝固温度区间的塑性常 被用来表征材料的凝固热裂纹敏感性,各种热裂纹 实验采用专用夹具对焊接试件施加内部或外部的强 制拘束使其发生凝固热裂纹,通过测量裂纹发生的 临界拘束程度、裂纹的数量和长度等指标,定性比较 不同材料在凝固温度区间的塑性大小,从而评价材 料的热裂纹敏感性[1]。然而,这些评价指标与凝固

作者简介:温 鹏(1981—),男,工学博士,讲师,主要从事激光焊接及焊接冶金与结构等方面的研究。

言

收稿日期: 2011-03-18; 收到修改稿日期: 2011-04-12

基金项目:国家自然科学基金(51005125)资助课题。

E-mail: wenpeng@tsinghua.edu.cn

热裂纹的发生原理并没有直接联系,其准确性和重 复性受到质疑^[2]。横向可调拘束热裂纹 (Transverse varestraint)实验从凝固金属变形能的 观点出发,利用热裂纹发生的临界应变获得焊缝金 属的高温韧性曲线,作为可定量提供焊缝金属在凝 固温度区间塑性的方法被广泛应用^[3]。

高温韧性曲线由焊缝金属在凝固温度区间内不 同温度下所发生裂纹的临界应变组成,该曲线作为 凝固热裂纹发生的抵抗力,对于评价凝固热裂纹敏 感性和预测凝固热裂纹发生具有重大意义[1,2]。由 于焊接过程中熔池随着热源移动,凝固前沿在时间 和空间上存在持续变化,加上高温和相变,凝固热裂 纹发生的高温局部应变很难测量。横向可调拘束热 裂纹实验根据圆形凸台的曲率求得裂纹发生时焊件 的整体应变,通过改变弯曲凸台曲率,获得不同拘束 程度下裂纹发生的整体应变,从而构建了高温韧性 曲线[4]。然而,由于用整体应变代替了裂纹发生处 的局部应变,所求得的高温韧性曲线的精度和适用 范围存在较大问题^[2,5]。另一方面, Matsuda 等^[6]利 用在线观察测量(MISO)法对钨惰性气体(TIG)焊 接过程中熔池凝固前沿进行了动态观察,并结合强 拘束拉伸装置对凝固热裂纹发生时的临界位移进行 了测量,但目前利用在线观察法对激光焊接过程中 凝固热裂纹敏感性的相关研究还很少[7]。

近年来,随着光学技术和数码技术的快速发展, 高速摄像能够方便快捷地记录焊接过程中的瞬时变 化,激光焊接过程在线观察和检测手段日益丰富,例 如对于激光焊接过程中熔池形状^[8,9]、等离子体行 为^[10,11]和熔透情况^[12,13]等进行相关研究。本文开 展基于在线观察法的U型热裂纹实验,对激光焊接 过程中热裂纹的发生和传播行为进行观察,并对热 裂纹发生部位的局部应变和温度进行测量,从而精确 地获得了材料对应激光焊接过程的高温韧性曲线。

2 实验方法

图1为所采用的基于在线观察的激光焊接 U 型热裂纹实验装置图。焊接热源为 IPG YLR-3000 光纤激光器,最大输出功率为3 kW,激光波长为 1070 nm,产生的激光通过 0.2 mm 芯径的加工光纤 连接到安装在机械手臂上的焊接加工头,加工头偏 离垂 直方向 10°。加工头处聚焦透镜的焦距为 400 mm,聚焦光斑直径为 0.44 mm。焊接过程中采 用 Ar 气对焊缝及熔池进行保护,正面和背面保护 气流量分别为 50 L/min 和 15 L/min。焊接材料为 SUS347 奥氏体不锈钢和 Inconel600 镍基合金(JIS 日本钢铁标准),材料化学成分如表 1 所示。焊接试 件尺寸为 104 mm×30 mm×3 mm(宽度×焊接方 向×厚度),焊接方法为平板熔焊,焊接时激光焦点 位于工件表面,所使用的激光功率为1.6 kW,焊接 速度为 0.4 m/min。

图 1 带有在线观察的激光焊接 U 型热裂纹实验装置 Fig. 1 Setup of U-type hot cracking test with *in-situ* observation during laser welding

表1 所用材料的化学成分(质量分数	,%)
-------------------	-----

Tab	le 1	(Chemical	compositions	of u	sed stai	nless	steels	(mass	fraction,	%))
-----	------	---	----------	--------------	------	----------	-------	--------	-------	-----------	----	---

Material	С	Mn	Si	Р	S	Cr	Ni	Fe	Nb
SUS47	0.05	1.51	0.58	0.031	0.001	18.01	9.93	Bal.	0.56
Inconel600	0.04	0.20	0.20	_	0.001	15.40	Bal.	8.8	_

图 2 为 U 型热裂纹实验的原理图。U 型夹具 由底板和两片拘束臂构成,拘束臂中央的内外两侧 贴有应变片,用来实时记录拘束臂的变形量。焊接 前通过外载荷对拘束臂施加一定变形,然后将实验 片固定在拘束臂上端,释放外载荷后,拘束臂对实验 片形成横向拉伸载荷,该拉伸载荷与拘束臂的变形 量成正比,可用拘束臂的刚度系数 k 表示。实验采 用具有不同刚度系数的两种 U 型夹具,其刚度系数 k₁和 k₂分别为 5.79 kN/mm 和 2.07 kN/mm。通 过对拘束臂预置不同初始变形,可对试件施加不同 的拉伸载荷,在拘束状态下对试件进行激光焊接,得 到不同程度的凝固热裂纹。

激光焊接过程中采用装有微距镜头[Nikon, 200 mm *f*/4*D*(IF)]的高速摄像机(Photron, FASTCAM-1024)对熔池后方进行放大摄像,高亮 度金属卤化物灯(Kyowa, MID-25FC)被用来提供

图 2 U型热裂纹实验原理图。 $F = k \cdot \delta$, F为初始拉伸载荷, δ 为初始变形

Fig. 2 Schematic of U-type hot cracking test. $F = k \cdot \delta$, F; initial tensile load, δ ; initial deformation 主动照明,并在镜头前加装了具有遮挡激光和吸收 热辐射的光学滤镜,保证可见光域的摄像。焊接过 程中激光加工头和摄像机位置固定,焊接工件随机 床移动。激光光斑在前,摄像镜头中心在后,摄像中 心始终位于熔池后端裂纹发生区域。摄像帧速为 500 frame/s,快门时间为 1/500 s,光学放大倍数约 为7倍。此外,为了精确测量焊接熔池后端的温度 变化,焊前在焊接试件表面对热电偶投入位置进行 标记,在焊接过程中,高速摄像机拍摄的熔池移动图

像通讨图像采集卡同步传输到液晶显示器,如图 3 所示。当熔池后端到达标记的投入位置时,热电偶 通过一个带有定位装置的长杆手动投入到熔池后 端。通过在线观察的方法,可精确地将热电偶投入 到预定位置,从而测量焊缝金属凝固时的温度变化。 使用热电偶类型为 PtRh13-Pt(R 型热电偶),电偶 丝直径为 0.25 mm。同一焊接规范下测量 3 次,最 终结果取平均值。

图 3 热电偶在线观察投入法测量焊接熔池后端温度变化。(a)焊接前,(b)焊接后 3 s,(c)3.18s Fig. 3 Dynamic images of thermocouple insertion (a) before and after (b) 3s, (c) 3, 18 s welding

实验结果和讨论 3

3.1 凝固裂纹的观察与局部应变的测量

如图 4 所示,激光焊接熔池后端的轮廓、凝固前 沿的柱状晶生长模样和凝固热裂纹的发生被摄像机 清晰地记录下来。可以看到,激光熔池后端轮廓呈 现泪滴状,柱状晶近乎平行地向焊缝中央生长,并在 焊缝中心线处会合,这种生长模式易在会合面处形 成显著的偏析弱面,对热裂纹抵抗力较弱。激光焊 接较快的焊接速度和冷却速度容易形成这种模式的 凝固,因此激光焊接可能会加剧凝固热裂纹的产生。 此外,凝固裂纹开始发生的部位距离熔池后端有一 定的距离,并非紧靠熔池后端处产生。U型热裂纹 实验中,根据所施加拉伸载荷的不同,热裂纹发生位 置到熔池后端距离为 0.2~0.6 mm。根据热裂纹 发生机理,焊缝金属在凝固过程中,经历液-固态(液 相占主要成分)和固-液态(固相占主要成分)两个阶 段,凝固裂纹一般发生在固-液态凝固金属交织长合 成枝晶骨架的阶段,该阶段位于凝固后期,此时焊缝 金属已主要为固相,但由于枝晶间尚存在未凝固完 的液膜,焊缝金属呈现极低的塑性,容易促使凝固热 裂纹的发生。紧靠熔池后端的地方,液相尚多且可 在枝晶间自由流动,即使焊缝金属受到一定拉伸应 变,凝固热裂纹亦难产生,因此凝固热裂纹均发生在 熔池后端有一定距离之处。

图 4 不同时刻的凝固热裂纹图像。(a)0,(b)0.08 s,(c)0.12 s,(d)0.20 s Fig. 4 Dynamic images of solidification cracking with time. (a) 0, (b) 0.08 s, (c) 0.12 s, (d) 0.20 s

焊缝金属一旦熔化为液态,所有的应力应变都 被释放,在随后的凝固过程中,伴随着凝固收缩和热 收缩,焊缝金属由液相变为固相,开始承受拉伸应 变,当拉伸应变高于焊缝金属塑性时,凝固热裂纹产 生。如图 5 所示,熔池后端轮廓线被认为凝固开始 时刻,这时焊缝金属的应变为零,取熔池后端轮廓线 的两点为标记点,其初始距离记为 L₀,时间为 t₀。 由图像运动解析软件(Ditect,DIPP-Motion)记录

下两标记点位移的动态变化,在裂纹发生瞬间 *t*₁ 时,两点间的距离记为*L*₁。通过比较*L*₀和*L*₁,可求 出裂纹发生的局部临界应变,即

$$\varepsilon_{\rm cr} = \frac{L_1 - L_0}{L_0} \times 100 \,\%. \tag{1}$$

与其他热裂纹实验相比,在线摄影得到的局部临界 应变保证了测量精度。

图 5 凝固热裂纹局部临界应变测量方法。(a)在线观察拍摄的图像,(b)局部应变测试方法示意图 Fig. 5 Measurement of local critical strain of solidification cracking. (a) *in-situ* observation image,

(b) measurement method

局部临界应变的大小与初始距离 L。的选取有 直接关系,由于凝固裂纹发生在枝晶之间,理想 L。 应为枝晶间间距,通常为十到几十微米。然而,受摄 像放大倍数的影响,随着 L。的减小,数据离散程度 增加。进一步提高摄像倍数,则导致摄像视野减小, 无法同时观察到熔池后端轮廓和裂纹发生瞬间。随 着 L。的减小,图像上可作为标记点的斑点变少,不 仅很难精确捕捉到标记点位移,而且裂纹发生部位 可能偏出标记点范围,导致测量失败。考虑到实验 的摄像放大倍数和观察条件,初始距离 L。约为 1 mm。此时高速摄像机可清楚捕捉到凝固热裂纹 发生瞬间,且所测的标记点位移变化的离散度较小。 初始距离为 1 mm 时,裂纹尖端附近的局部应变变 化如图 6 所示。在 0 s 时刻,两标记点位于熔池轮 廓线,此时温度为液相线温度,应变为 0。随着时间 推移,应变不断增加,当图像捕捉到裂纹发生瞬间时 的应变为局部临界应变。U型夹具1 和夹具 2 的初 始拉伸载荷分别为 9.6 kN 和 7.2 kN,凝固热裂纹 发生的局部临界应变分别为 0.8%和 1.2%,具有较 大刚度系数的夹具 2 产生热裂纹的时间较夹具 1 提前。

3.2 高温韧性曲线的获得

通过热分析得出 SUS347 在近平衡状态下的液 相线和固相线温度分别为 1469 ℃和 1357 ℃,取其 液相线为焊接过程的液相转变温度。图 7 为由热电 偶投入法测得的熔池后端焊缝金属凝固过程的冷却

图 6 裂纹尖端的局部应变随时间变化曲线

Fig. 6 Local strain development with time

曲线。由图 6,7 所示应变及温度随时间变化曲线, 可换算得到应变随温度变化曲线,并得到裂纹发生 时的温度,如图 8 所示。由于 U 型夹具 2 的刚度系 数高于夹具 1,U 型夹具 2 的裂纹发生时间要早于 夹具 1,相应裂纹发生温度要高于夹具 1,因此通过 采用两种夹具,可以获得较宽温度范围内不同热裂 纹的局部临界应变。

图 7 焊缝金属凝固过程的冷却曲线

Fig. 7 Cooling curve of weld metal during solidification

图 8 裂纹尖端的局部应变随温度变化曲线 Fig. 8 Local strain development with temperature 通过改变 U 型夹具的初始拉伸载荷,可以获得 SUS347 试件在不同温度下的局部临界应变,如图 9 所示。与 U 型夹具 1 相比,夹具 2 产生的裂纹多集 中在凝固温度区间靠近高温的区域。对不同温度下 的局部临界应变进行线形拟合,可得到凝固温度区 间内的高温韧性曲线。图中的 T_L 和 T^{*} 分别表示 由热分析获得的液相线温度 1469 ℃和 U 型热裂纹 实验中裂纹发生的最低温度 1342 ℃。由于焊接过 程的冷却速度远高于热分析的冷却速度,焊缝金属 的实际固相线温度要低于热分析获得的固相线温 度,因此焊缝金属的脆性温度区间(BTR)的下限应 为液膜完全消失的实际固相线,而非热分析得到的 固相线。在接近液相线温度区域,由于液体金属的 填充作用,凝固热裂纹很难产生;在接近实际固相线 的温度区域,由于液膜不断减少,焊缝金属已经开始 恢复固体塑性,凝固热裂纹也很难产生。因此在这 两个区域附近,实际热裂纹发生受到的影响很小,在 图 9 的高温韧性曲线中用虚线表示。 $T_{\rm L} \sim T_{\rm s}^*$ 为 U 型热裂纹实验裂纹可能发生的温度区域,可以用来 表征脆性温度区间的大小,一般来说材料的脆性温 度区间越大,越容易发生热裂纹。采用相同的办法, 获得了 Inconel600 试件在不同温度下的局部临界 应变,并构建了相应的高温韧性曲线。

图 9 SUS347 高温韧性曲线获得方法 Fig. 9 Achievement of high temperature ductility curve for SUS347

3.3 高温韧性曲线和凝固热裂纹敏感性

图 10 为基于在线观察法获得的 SUS347 和 Inconel600 的高温韧性曲线。与 SUS347 的高温韧 性曲线不同,Inconel600 高温韧性曲线的倾角为钝 角,即脆性温度区间内靠近低温段的临界应变要低 于靠近高温段的临界应变。从高温韧性曲线中可得 到 3 个指标用来评价凝固热裂纹敏感性,分别为最 小临界应变 ϵ_{min} 、脆性温度区间 $T_L \sim T_s^*$ 和临界应 变随温度变化速率(CST)。由于低塑性或脆化只是 开裂的条件之一,是否能产生裂纹还需看脆性温度 区间内的应变发展情况,所以,用刚好产生裂纹的 CST 作为评价材料的凝固热裂纹敏感性的判据更 为适当。如果知道某种材料的 CST,通过与一定焊接条件下的应变变化速率进行比较,就可以预测该条件下凝固热裂纹是否发生^[14]。

图 10 SUS347 和 Inconel600 的高温韧性曲线 Fig. 10 High temperature ductility curves of SUS347 and Inconel600

从图 10 可知, SUS347 和 Inconel600 的 ε_{min} 、 $T_{L} \sim T_{s}^{*}$ 及 CST 分别为 0.8%和 0.85%,122 ℃和 80 ℃及 0.85×10⁻⁴/℃和 1.05×10⁻⁴/℃。这说明 SUS347 的热裂纹敏感性要高于 Inconel600,即相同 焊接条件下, SUS347 更容易出现凝固热裂纹。

4 结 论

开发了基于在线观察的U型热裂纹实验,通过 改变U型夹具的刚性系数和初始拉伸载荷,获得了 不同程度的凝固热裂纹,并拍摄下了激光焊接过程 的凝固热裂纹的发生过程。通过动态测量凝固热裂 纹尖端的局部应变和温度,以良好的精度获得了较 大温度范围内凝固热裂纹发生时的局部临界应变。 获得了 SUS347 和 Inconel600 两种材料与激光焊接 对应的高温韧性曲线,为激光焊接过程中评价凝固 热裂纹敏感性及预测凝固热裂纹发生提供了新方法 和重要数据。

参考文献

1 S. Kou. Welding Metallurgy[M]. New Jersey: John Wiley & Sons, 2002. 263~295

- 2 Feng Zhili. A Methodology for Quantifying the Thermal and Mechanical Conditions for Weld Metal Solidification Cracking [D]. Columbus: Ohio State University, 1993
- 3 T. P. Shankar, P. S. Gill, S. L. Mannna *et al.*. Criteria for hot cracking evaluation in austenitic stainless steel welds using longitudinal varestraint and transvarestraint tests [J]. *Sci. Technol. Weld Joining*, 2000, 5(2): 91~97
- 4 T. Senda, F. Matsuda. Studies on solidification cracking susceptibility for weld metals with trans-varestraint test[J]. J. Jpn. Weld Soc., 1972, 41(6): 709~723
- 5 F. Matsuda, H. Nakagawa, S. Tomita *et al.*. Investigation of weld solidification cracking by MISO technique-1[J]. *Q. J. Jpn. Weld Soc.*, 1988, 6(3): 394~400
- 6 F. Matsuda, H. Nakagawa, S. Tomita *et al.*. Investigation of weld solidification cracking by MISO technique-2[J]. *Q. J. Jpn. Weld Soc.*, 1988, 6(3): 401~405
- 7 P. Wen, K. Shinozaki, M. Yamamoto *et al.*. *In-situ* observation of solidification cracking of laser dissimilar welded joints[J]. *Q. J. Jpn. Weld Soc.*, 2009, **27**(2): 134~138
- 8 Meng Xuanxuan, Wang Chunming, Hu Xiyuan. High-speed photograph and the analysis of the welding pool and keyhole in fiber laser welding [J]. *Electric Weld Machine*, 2010, (11): 78~81

孟宣宣,王春明,胡席远.光纤激光焊接熔池和小孔的高速摄像与分析[J]. 电焊机,2010,(11):78~81

- 9 R. Fabbro. Melt pool and keyhole behavior analysis for deep penetration laser welding [J]. J. Phys. D., 2010, 43 (44): 445501
- 10 Y. Kawahito, N. Matsumoto, M. Mizutani *et al.*. Characterization of plasma induced during high power fiber laser welding of stainless steel[J]. *Sci. Technol. Weld Joining*, 2008, 13(8): 744~748
- 11 Li Guohua, Cai Yan, Wu Yixiong. Stability information in plasma image of high-power CO₂ laser welding [J]. Opt. Laser Eng., 2009, 47(9): 990~994
- 12 Zhang Xudong, Chen Wuzhu, Liu Chun et al.. Coaxial monitoring and penetration control in CO_2 laser welding [J]. Transactions of the China Welding Institution, 2006, 27(1): $13 \sim 16$

张旭东,陈武柱,刘 春等. CO₂ 激光焊接的同轴检测与熔透控制[J]. 焊接学报,2006,27(1):13~16

- 13 Duan Aiqin, Hu Lunji, Wang Yajun. Research on weld penetration monitoring by laser plasma optical signal in laser welding[J]. Chinese J. Lasers, 2005, **32**(1): 131~134 段爱琴, 胡伦骥, 王亚军. 激光深熔焊焊缝的熔透性监测研究 [J]. 中国激光, 2005, **32**(1): 131~134
- 14 Y. H. Wei, R. P. Liu. Software package for simulation and prediction of welding solidification cracks[J]. Sci. Technol. Weld Joining, 2003, 8(5): 325~333